Fifty Years in the Development of a Glutaminergic-Dopaminergic Optimization Complex (KB220) to Balance Brain Reward Circuitry in Reward Deficiency Syndrome: A Pictorial.

نویسندگان

  • K Blum
  • M Febo
  • R D Badgaiyan
چکیده

Dopamine along with other chemical messengers like serotonin, cannabinoids, endorphins and glutamine, play significant roles in brain reward processing. There is a devastating opiate/opioid epidemicin the United States. According to the Centers for Disease Control and Prevention (CDC), at least 127 people, young and old, are dying every day due to narcotic overdose and alarmingly heroin overdose is on the rise. The Food and Drug Administration (FDA) has approved some Medication-Assisted Treatments (MATs) for alcoholism, opiate and nicotine dependence, but nothing for psychostimulant and cannabis abuse. While these pharmaceuticals are essential for the short-term induction of "psychological extinction," in the long-term caution is necessary because their use favors blocking dopaminergic function indispensable for achieving normal satisfaction in life. The two institutions devoted to alcoholism and drug dependence (NIAAA & NIDA) realize that MATs are not optimal and continue to seek better treatment options. We review, herein, the history of the development of a glutaminergic-dopaminergic optimization complex called KB220 to provide for the possible eventual balancing of the brain reward system and the induction of "dopamine homeostasis." This complex may provide substantial clinical benefit to the victims of Reward Deficiency Syndrome (RDS) and assist in recovery from iatrogenically induced addiction to unwanted opiates/opioids and other addictive behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pro-Dopamine Regulator – (KB220) to Balance Brain Reward Circuitry in Reward Deficiency Syndrome (RDS)

We are faced with a worldwide opiate/opioid epidemic that is devastating. According to the Centers for Disease Control and Prevention (CDC), at least 127 people, young and old, are dying every day in America due to narcotic overdose. The Food and Drug Administration (FDA) has approved Medication-Assisted Treatments (MATs) for opiate/opioids as well as alcohol and nicotine. The mechanism of acti...

متن کامل

Coupling Genetic Addiction Risk Score (GARS) and

We are proposing a generalized approach based on the Reward Deficiency Syndrome (RDS) conceptualization called the Systematic Medical Approach to Reward Transformation (SMARTTM). This system consists of: early pre-disposition diagnosis (even in children) using the Genetic Addiction Risk Score (GARS) [1]; a validated RDS questionnaire [2]; urine drug testing during actual treatment that uses com...

متن کامل

Neurobiology of KB220Z-Glutaminergic-Dopaminergic Optimization Complex [GDOC] as a Liquid Nano: Clinical Activation of Brain in a Highly Functional Clinician Improving Focus, Motivation and Overall Sensory Input Following Chronic Intake

Background With neurogenetic and epigenetic tools utilized in research and neuroimaging, we are unraveling the mysteries of brain function, especially as it relates to Reward Deficiency (RDS). We encourage the development of pharmaceuticals or nutraceuticals that promote a reduction in dopamine resistance and balance brain neurochemistry, leading to dopamine homeostasis. We disclose self-assess...

متن کامل

"Liking" and "wanting" linked to Reward Deficiency Syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry.

In an attempt to resolve controversy regarding the causal contributions of mesolimbic dopamine (DA) systems to reward, we evaluate the three main competing explanatory categories: "liking,""learning," and "wanting" [1]. That is, DA may mediate (a) the hedonic impact of reward (liking), (b) learned predictions about rewarding effects (learning), or (c) the pursuit of rewards by attributing incen...

متن کامل

Coupling Neurogenetics (GARS™) and a Nutrigenomic Based Dopaminergic Agonist to Treat Reward Deficiency Syndrome (RDS): Targeting Polymorphic Reward Genes for Carbohydrate Addiction Algorithms

Earlier work from our laboratory, showing anti-addiction activity of a nutraceutical consisting of amino-acid precursors and enkephalinase inhibition properties and our discovery of the first polymorphic gene (Dopamine D2 Receptor Gene [DRD2]) to associate with severe alcoholism serves as a blue-print for the development of "Personalized Medicine" in addiction. Prior to the later genetic findin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Austin addiction sciences

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 2016